zKTAL: Type Checking Assembly in
Zero-Knowledge

Luis Ferreirinha
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands
Lp.felixferreirinha@vu.nl

Abstract—In this short paper, we introduce zZKTAL, a novel ap-
proach that encodes type derivations of typed assembly language
programs within a zero-knowledge proof system. Our method
allows end-users to efficiently verify that a given binary adheres
to a specified type system, preserving memory and control-flow
safety guarantees, without revealing sensitive information. As
a preliminary demonstration, we implement a proof-of-concept
using Noir, a zZkSNARK framework, to verify that programs for
a simple typed assembly language, with control-flow safety, were
correctly type-checked in zero-knowledge.

Index Terms—typed assembly language, type checker, formal
verification, zero-knowledege, zksnark

I. INTRODUCTION

Proprietary applications, such as Microsoft Office, Adobe
Creative Suite, Windows, and proprietary device drivers and
firmware, are among the most widely used software today.
Unlike their open-source counterparts, their source code is
inaccessible to public audit and available only to company
developers, requiring users to put their trust in the vendors.
However, these proprietary applications are frequently found to
contain vulnerabilities that compromise user data and system
integrity [1]. Unfortunately, due to their closed-source nature,
users cannot independently verify whether the software they
rely on is functionally correct or free from vulnerabilities.

This leads to the question: How can end-users ensure that
the software they are executing is safe? Currently, they are
faced with only two choices: trust the software provider or
attempt to reverse engineer the program to uncover potential
weaknesses. However, the latter is impractical, as reverse
engineering a binary is an enormous undertaking, especially
since software vendors commonly obfuscate or strip binaries
to protect intellectual property (IP), greatly complicating such
efforts. The alternative would be to have vendors directly
provide a proof for users to independently verify that their
software is indeed safe. However, this would inadvertently
reveal sensitive information about the program design, thus
compromising IP.

To tackle this issue, we propose zkTAL, an approach that
allows vendors to preserve their IP while allowing end-users to
independently verify the safety of the software they execute.
We realize this approach, by combining formal verification
with cryptographic zkSNARK proofs. Among formal verifica-
tion techniques, type systems stand out as the most lightweight

Klaus v. Gleissenthall
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

k.freiherrvongleissenthal @ vu.nl

and widely adopted. For example, the Rust programming
language employs a robust type system that enables developers
to write memory-safe programs [2]. Inspired by this, we de-
velop a type system for RISC-V assembly, that enables formal
proofs showing that a binary annotated with type information
is free of memory errors, if it type-checks. To address the
concern of information leakage, the vendor must supply a
cryptographic proof stating compliance with the type system,
rather than shipping the proof directly. Such a cryptographic
proof must simultaneously conceal the actual types and be
efficiently verifiable by the end-user. Zero-knowledge succinct
arguments of knowledge (zkSNARKSs) [3] effectively meet
these requirements, as they provide zero-knowledge assurances
and efficient verification. In this short paper, we present zkTAL
a novel approach to encoding correctness proofs for typed
assembly programs within a zero-knowledge proof system,
thereby enabling the end-user to efficiently verify that the
program adheres to the type system without compromising
sensitive information.

II. OVERVIEW

The verification of a binary using zkTAL consists of two
phases: proof generation by the vendor, and proof verification
by the user. Figure 1 illustrates this process.

——
Typing
Rules

Vendor

Type Preserving
Compiler

Type Inference
Tree

Fig. 1. Verification process of a binary with zkTAL

Verifier

I

Binary

]

ZK Proof

Trusted Untrusted

To generate the proof, the vendor first compiles their source
code using a type-preserving compiler, resulting in assembly



code annotated with types for the target architecture. These
type annotations are then used to construct a type inference
tree. If this tree is valid, it demonstrates that the assembly
code is correctly typed and, therefore, memory-safe according
to the guarantees of the type system. This type inference tree
is then encoded within zero-knowledge, and is given to a
zkSNARK prover, which then generates a cryptographic proof
that witnesses the correct type derivation without revealing
any information about the proof. Finally, the vendor ships the
assembled binary, stripped of the type annotations, along with
the corresponding zkSNARK proof.

On the user’s side, the end-user receives the binary, the
cryptographic proof, and a public specification of the typing
rules. These components serve as input to the zkSNARK
verifier, which then accepts or rejects the proof. If accepted,
the binary can be considered trustworthy, and the user gets a
cryptographic guarantee that the vendor successfully proved
the delivered binary correct.

A. Zero-Knowledge Encoding

A zkSNARK [3], [4] is a cryptographic proof system that
allows a prover to convince a verifier of the validity of a
statement without revealing any additional information beyond
the fact that the statement is true. In zkTAL, the prover seeks
to demonstrate to the verifier that they possess a valid proof
of the binary’s correctness, namely, a type derivation in the
form of a type inference tree.

To encode typing checking within a zkSNARK, we must
first encode it into an arithmetic circuit — a collection of
addition and multiplication gates where values range over
a finite field. Such an encoding is quite restrictive — most
importantly, it means we cannot use unbounded loops or
recursion to write our type-checker. The arithmetic circuit
takes as input an encoding of the type-derivation tree that
proves correctness of the binary. To supply this tree, we have
to encode it in terms of a bounded number of field elements or
arrays thereof. For this, we follow the approach of zkPi [5], a
zkSNARK for Lean Theorems, and encode the type inference
tree as a linear array of sub-derivations, linked by pointers. To
check the correctness of these derivations, we have to retrace
the type derivation of the original tree in the linearized array.
To check a given derivation, we first check the derivation
individually, and then recursively check all sub-derivation it
depends on. We encode this dependence via pointers that point
to the array location of each sub-derivation. For each typing
judgment, we also include a reference to the typing rule it used.
We provide typing rules as public input to the verifier who can
therefore check that only valid typing rules where used in the
proof. Since we cannot use unbounded loops or recursion in
circuits, we have to unroll all loops in the recursive traversal
of the linearized array.

B. Typed Assembly Language

By targeting assembly language directly for type checking,
rather than source code, we extend type safety guarantees
directly to the binary level. These guarantees depend on the

underlying type system; for example, Rust [2] demonstrates
that a type system can enforce memory safety at the source
code level. At the assembly language level, previous work
by Morrisett et al. [6] has shown that a type-safe assembly
language can be accompanied by a formal soundness proof,
establishing that successfully type-checked programs have
both memory and control flow safety.

Inspired by TALx86 [7] an implementation of a type system
for x86 assembly, we decided to adapt the type system pre-
sented for TAL-1 [8], and use it as the basis for a future RISC-
V type system. TAL-1 is a typed assembly language designed
to enforce memory safety and control-flow integrity at the
assembly level. Similar to Rust, it achieves these guarantees
through a type system that manages memory operations using
two different pointer types: shared data pointers, which main-
tain type invariance to safely handle aliased data, and unique
data pointers, which ensure exclusive ownership, allowing
controlled modifications to memory objects. TAL-1 also uses
polymorphic types to effectively handle aliasing concerns,
improving overall memory safety. The typing rules then ensure
that all memory accesses and control-flow transitions strictly
adhere to type constraints, eliminating many classes of unsafe
behavior typically associated with low-level code.

C. Challenges

Implementing zkTAL involves addressing several significant
challenges. First, adapting and extending an existing type
system to the RISC-V instruction set is itself a substantial
undertaking. Combining this effort with the requirement to
encode the verification of the type inference tree in a zero-
knowledge proof system further increases complexity.

Regarding the type system, the main challenge is adapting
the relatively simple type system of TAL-1 to the RISC-
V instruction set. This adaptation involves redesigning heap
memory and pointer types to more accurately reflect real hard-
ware, defining typing rules for the new RISC-V instructions,
and introducing additional types to handle varying data sizes.

On the zkSNARK side, the primary challenge is developing
efficient encodings of the type-inference tree and typing rules,
in order to ensure the verification circuits are compact which
makes verification fast.

III. PRELIMINARY RESULTS

We have developed a preliminary proof-of-concept imple-
mentation of zkTAL using Noir,! a zkSNARK framework.
Specifically, we implemented TAL-0 [8], a simple typed
assembly language with control flow safety in Rust. From
this implementation, we generated type-inference trees for
typed assembly programs, and encoded these trees as arrays
consisting of hashed terms and pointers. Using these encodings
as a witness, we constructed a custom verification circuit in
Noir, designed to validate the correctness of the encoded type
inference trees. We then generated zkSNARK proofs using
the Barretenberg backend, and successfully verified in zero-
knowledge that the programs were correctly type-checked.

Thttps:/moir-lang.org/



(1]

[2]

[3]
(4]
(3]
(6]
(71
(8]

REFERENCES

M. Cadariu, E. Bouwers, J. Visser, and A. Van Deursen, “Tracking
known security vulnerabilities in proprietary software systems,” in 2015
1EEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), (Montreal, QC, Canada), pp. 516-519, IEEE,
Mar. 2015.

N. D. Matsakis and F. S. Klock, “The rust language,” in Proceedings of
the 2014 ACM SIGAda annual conference on High integrity language
technology, (Portland Oregon USA), pp. 103—-104, ACM, Oct. 2014.

N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin, A. Rubinstein,
and E. Tromer, “The Hunting of the SNARK,”

J. Liang, D. Hu, P. Wu, Y. Yang, Q. Shen, and Z. Wu, “SoK: Under-
standing zk-SNARKSs: The Gap Between Research and Practice,”

E. Laufer, A. Ozdemir, and D. Boneh, “zkPi: Proving Lean Theorems in
Zero-Knowledge,” 2017.

G. Morrisett, D. Walker, and K. Crary, “From System F to Typed
Assembly Language,”

G. M. K. Crary, N. Glew, D. Grossman, and R. Samuels, “TALx86: A
Realistic Typed Assembly Language,”

B. C. Pierce, ed., Advanced topics in types and programming languages.
Cambridge, Mass: MIT Press, 2005.



